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Abstract 

Two formulae for the number of  sublattices of  a given index k of  
an n-dimensional lattice are presented. They are based on the 
decomposition of  the index k into a product of  prime numbers 
and have the form of  a rational function of  these primes. 
Compared with other known methods, they can give the result 
in a much quicker and more comfortable way. 

1. Introduction 

To determine the number F(n, k) of  sublattices of  the index 
(k > 0) of  an n-dimensional lattice L (n > 0) belongs 
undoubtedly to the first tasks of  lattice theory. Moreover, it can 
be useful in crystallography, e.g. when considering subgroups 
of  the space groups. However, it has not penetrated into the text 
books on crystallography, not even into International Tables for  
Crystallography (1995) and must be looked for in other regions 
of  mathematics. Thanks to some information that we have been 
kindly given, we became acquainted with two ways of  
determining this number. 

(i) Cassels (1971) has shown that F(n, k) is equal to the 
number of  matrices of  a certain shape, however, he did not 
suggest how to count them effectively. These matrices are 
square matrices of  rank n with integer elements rg fulfilling 

O = r 0 for 1 < i < j < n, 

O < r~ < rjj for l < j < i < n, 

rllr22 . . .  r , ,  = k. (1) 

The set of  all such matrices is further denoted 7~(n, k). 
(ii) Baake (1997), using the result of  Scheja & Storch (1988), 

established a concise formula 

F(n, k) = ~ ,  ~dX~ . . .ci",, - '  (2) 

where the sum is over all sequences 

a l ,  a2 . . . . .  a. 

of  positive integers fulfilling 

a,  a2 . . . a .  = k .  

In this paper, we derive two formulae alternative to (2). 
Although they look more complicated, they are usually quicker 
for numerical calculations. An example will show this. The 
formulae do not include the trivial case k = 1. Our approach is 
based on counting the matrices of  Tg(n, k). 

~" Meaning that any of these sublattices has the dimension n and is k 
times 'thinner' than the lattice L. 
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2. Formulae 

Let n > 0, k > 1 be integers, 

k =pq '  ...pqm (m > 1), (3) 

where Pl . . . . .  Pm are mutually different prime numbers and 
qi . . . . .  qm positive integers. Let L be an n-dimensional lattice 
and F(n, k) the number of  sublattices of  L of  the index k. Then, 

m qt 

F(n ,k )  = ]--I I-I(~i +"-1 - 1)(p~ - 1) -l 
i=1 j = l  

and also:~ 

m n--I  

F(n ,  k)  = I-I 1-I (p/+qi _ _  1 ) ( p C  - -  1)-'. (4) 
/=1 j = l  

Remark 1. Both formulae may seem rather complicated but 
they can be reformulated into a simple rule: 

For any factor pq in (3), calculate either 

p ~ - I  p ~ + l _ l  p ~ + 2 _ l  
x - -  x . . . .  (5) 

p -  1 p2 _ 1 p3 _ 1 , 

q times 

o r  

pq+l _ 1 pq+2 _ 1 pq+3 _ 1 
- -  x - -  x . . . .  ( 6 )  
, p -  1 p2 _ 1 p3 _ 1 , 

(n - 1 ; t imes  

and multiply all these numbers. 
Remark 2. The numbers (5), (6) are, of  course, equal, We may 

prefer the formula that is 'shorter', that is (5) for q < n - 1 and 
(6) f o r n - 1  < q .  

Remark 3. Both formulae have the form of  a rational function 
in p but stand actually for a polynomial. The expressions for its 
coefficients are, however, complicated. 

Example. Determine the number of  sublattices of  the index 
12 of a 5-dimensional lattice. Since 12 = 22 x 3, the formula 
(5) is preferred according to Remark 2 for both factors 22 and 3. 
We get 

25 - 1 26 - 1 35 - 1 
- 78 771. X X 

2 - 1  ~ 3 - 1  

Formula (6) gives the same number as a product of  eight 
fractions where, however, five cancellings occur. 

~: Putting for n = 1 the 'empty' product I-Ij~l I in (4) equal to 1. 
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For comparison: to use formula (2) would require the 
construction and summing of  75 products. 

3. Proof 

It is known (e.g. Baake, 1997, Appendix) that 

F(n, klk2) = F(n, kl)F(n, k2) 

for positive integers k~, k 2 without a common factor. Thus, we 
can confine ourselves in (3) to m = 1 and putp  = Pl,  q = ql so 
that 

k = pq (/9 > 1 prime, q > 0). (7) 

Further, we keep the prime number p fixed and denote 

G(n, s) = F(n, pS) for n > 0, s > 0. 

Then, 

G ( n , O ) = G ( 1 , s ) = l  f o r n > 0 ,  s > 0 .  (8) 

First we want to prove that G(n, q) (n > 0, q > 0) is equal to 
the number (5). From (1) and (7), it follows that in any of  the 
matrices of  T~(n,p q) there is 

F I  1 =pi, 
where i is an integer fulfilling 0 < i < q. Thus, let us take a 
certain i with this property and ask how many matrices are there 
in 7¢(n,pq) with rll = pi. Let M be one of  these matrices. If  
n = 1, it is the only one in accordance with (8). 

Further, let n > 1. Then any of  the n - 1 elements 

/ ' 2 1 ,  " • " , r n l  

may assume any of  the p~ values 

0, 1 . . . . .  p i _  1 

which makes 

p,(,-l) (9) 

configurations in the first column of  M. Any of  them is 
combined with a matrix M' complementary in M to the element 
rll.  The product of  the elements of  M' in the main diagonal is 
pq-~. Thus, M' belongs to the set R(n  - 1, pq-~) that contains, 
according to its definition, G(n - 1, q - i) matrices. Putting this 
together with (9), we get that the number of  matrices in R(n, pq) 
with r~ = pi is equal to 

p~(':-l)G(n - 1, q - i). 

Summing over i gives 

q 

G(n,q)= ~-~pi(n-I)G(n-- 1,q-- i ) .  (10) 
i = 0  

Here it is assumed that n > 1, q > 0 but the formula is valid 
also for n > 1, q = 0 according to (8). Writing in (10) q - 1 
instead of  q, we get 

q - - I  

G ( n , q -  1 ) =  ~_,pi(~-l)G(n- 1 , q - i -  1) (11) 
i = 0  

for n > 1, q > 0. From (10) and (11), a recursion formula 

G(n,q) = G ( n -  1 , q ) + p " - l G ( n , q -  1) (12) 

follows for n > 1, q > 0. By this formula and the 'boundary' 
values (8), the function G(n, s) (n > 0, s > 0) is uniquely 
determined. 

Now we define a function H in this way: H(n, q) is equal to 
the number (5) for n > 0, q > 0 and H(n,O) = 1 for n > 0. 
Then, the recursion formula (12) and the relations (8) remain 
correct i f H  is written there instead of  G. But then G and H must 
be identical. Thus, G(n, q) is equal to the number (5) q.e.d. 

Finally, we can directly verify that the numbers (5), (6) are 
equal and the proof is completed. 

4. Concluding remarks 

Two alternative formulae for determining the number of  
sublattices of  the index k of  an n-dimensional lattice were 
derived. They enable a comfortable numerical calculation, 
especially for greater values of  n and/or k. 

The author thanks B. Novfik (Prague), P. M. Gruber (Vienna) 
and M. Baake (Tuebingen) for directing his attention to the right 
references. He also acknowledges a contribution of  his wife 
Zdefika to the construction of  the formulae. 
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